Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.257
Filtrar
1.
Methods Mol Biol ; 2800: 1-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709473

RESUMO

The fruit fly Drosophila is a well-established invertebrate model that enables in vivo imaging of innate immune cell (e.g., macrophage) migration and signaling at high spatiotemporal resolution within the intact, living animal. While optimized methods already exist to enable flow cytometry-based macrophage isolation from Drosophila at various stages of development, there remains a need for more rapid and gentle methods to isolate living macrophages for downstream ex vivo applications. Here, we describe techniques for rapid and direct isolation of living macrophages from mature Drosophila pupae and their downstream ex vivo preparation for live imaging and immunostaining. This strategy enables straightforward access to physiologically relevant innate immune cells, both circulating and tissue-resident populations, for subsequent imaging of signal transduction.


Assuntos
Macrófagos , Pupa , Animais , Pupa/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Drosophila , Separação Celular/métodos , Citometria de Fluxo/métodos , Drosophila melanogaster/citologia
2.
Nature ; 624(7991): 425-432, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057665

RESUMO

Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.


Assuntos
Antidiuréticos , Nefropatias , Neoplasias , Neuropeptídeos , Receptores da Neurocinina-3 , Animais , Humanos , Camundongos , Antidiuréticos/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Nefropatias/complicações , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Túbulos de Malpighi/citologia , Túbulos de Malpighi/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Óxido Nítrico Sintase/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Arginina Vasopressina/metabolismo , Proteínas de Drosophila/metabolismo , Neuropeptídeos/metabolismo
3.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744859

RESUMO

Tissue-intrinsic defense mechanisms eliminate aberrant cells from epithelia and thereby maintain the health of developing tissues or adult organisms. 'Interface surveillance' comprises one such distinct mechanism that specifically guards against aberrant cells which undergo inappropriate cell fate and differentiation programs. The cellular mechanisms which facilitate detection and elimination of these aberrant cells are currently unknown. We find that in Drosophila imaginal discs, clones of cells with inappropriate activation of cell fate programs induce bilateral JNK activation at clonal interfaces, where wild type and aberrant cells make contact. JNK activation is required to drive apoptotic elimination of interface cells. Importantly, JNK activity and apoptosis are highest in interface cells within small aberrant clones, which likely supports the successful elimination of aberrant cells when they arise. Our findings are consistent with a model where clone size affects the topology of interface contacts and thereby the strength of JNK activation in wild type and aberrant interface cells. Bilateral JNK activation is unique to 'interface surveillance' and is not observed in other tissue-intrinsic defense mechanisms, such as classical 'cell-cell competition'. Thus, bilateral JNK interface signaling provides an independent tissue-level mechanism to eliminate cells with inappropriate developmental fate but normal cellular fitness. Finally, oncogenic Ras-expressing clones activate 'interface surveillance' but evade elimination by bilateral JNK activation. Combined, our work establishes bilateral JNK interface signaling and interface apoptosis as a new hallmark of interface surveillance and highlights how oncogenic mutations evade tumor suppressor function encoded by this tissue-intrinsic surveillance system.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Células Epiteliais , Proteínas Quinases JNK Ativadas por Mitógeno , Animais , Apoptose , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Epitélio/metabolismo , Genes Supressores de Tumor , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Células Epiteliais/citologia , Células Epiteliais/metabolismo
4.
Science ; 376(6595): 818-823, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587967

RESUMO

In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.


Assuntos
Divisão Celular , Proteínas de Drosophila , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteases Específicas de Ubiquitina , Animais , Citocinese/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Células Germinativas/citologia , Células Germinativas/fisiologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
Science ; 376(6590): 297-301, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420935

RESUMO

Animals have evolved mechanisms, such as cell competition, to remove dangerous or nonfunctional cells from a tissue. Tumor necrosis factor signaling can eliminate clonal malignancies from Drosophila imaginal epithelia, but why this pathway is activated in tumor cells but not normal tissue is unknown. We show that the ligand that drives elimination is present in basolateral circulation but remains latent because it is spatially segregated from its apically localized receptor. Polarity defects associated with malignant transformation cause receptor mislocalization, allowing ligand binding and subsequent apoptotic signaling. This process occurs irrespective of the neighboring cells' genotype and is thus distinct from cell competition. Related phenomena at epithelial wound sites are required for efficient repair. This mechanism of polarized compartmentalization of ligand and receptor can generally monitor epithelial integrity to promote tissue homeostasis.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Proteínas de Drosophila , Drosophila melanogaster , Células Epiteliais , Animais , Polaridade Celular/fisiologia , Transformação Celular Neoplásica/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Células Epiteliais/fisiologia , Discos Imaginais/citologia , Ligantes , Transdução de Sinais
6.
Cell Prolif ; 55(1): e13173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952996

RESUMO

OBJECTIVES: Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. MATERIALS AND METHODS: Flies were used to generate tissue-specific gene knockdown and gene knockout. qRT-PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA-seq was used to screen downstream mechanisms. RESULTS: Here, we report a member of the chloride channel family, ClC-c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC-c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. CONCLUSION: Our findings reveal an ISC-specific function of ClC-c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Proliferação de Células , Regulação para Baixo/genética , Endossomos/metabolismo , Mucosa Intestinal/citologia , Necrose , Regeneração , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34726688

RESUMO

The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy-endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43-mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.


Assuntos
Autofagia , Caseína Quinase I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neuroblastoma/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
8.
Nature ; 600(7888): 279-284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837071

RESUMO

Confocal microscopy1 remains a major workhorse in biomedical optical microscopy owing to its reliability and flexibility in imaging various samples, but suffers from substantial point spread function anisotropy, diffraction-limited resolution, depth-dependent degradation in scattering samples and volumetric bleaching2. Here we address these problems, enhancing confocal microscopy performance from the sub-micrometre to millimetre spatial scale and the millisecond to hour temporal scale, improving both lateral and axial resolution more than twofold while simultaneously reducing phototoxicity. We achieve these gains using an integrated, four-pronged approach: (1) developing compact line scanners that enable sensitive, rapid, diffraction-limited imaging over large areas; (2) combining line-scanning with multiview imaging, developing reconstruction algorithms that improve resolution isotropy and recover signal otherwise lost to scattering; (3) adapting techniques from structured illumination microscopy, achieving super-resolution imaging in densely labelled, thick samples; (4) synergizing deep learning with these advances, further improving imaging speed, resolution and duration. We demonstrate these capabilities on more than 20 distinct fixed and live samples, including protein distributions in single cells; nuclei and developing neurons in Caenorhabditis elegans embryos, larvae and adults; myoblasts in imaginal disks of Drosophila wings; and mouse renal, oesophageal, cardiac and brain tissues.


Assuntos
Aprendizado Profundo , Microscopia Confocal/métodos , Microscopia Confocal/normas , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Discos Imaginais/citologia , Camundongos , Mioblastos/citologia , Especificidade de Órgãos , Análise de Célula Única , Fixação de Tecidos
9.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638607

RESUMO

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.


Assuntos
Divisão Celular Assimétrica/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Animais , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Tamanho Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Modelos Neurológicos , Miosinas/fisiologia , Neurogênese/fisiologia , Organelas/fisiologia
10.
Biochem J ; 478(20): 3791-3805, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709374

RESUMO

Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oogênese/genética , Espermatogênese/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fatores Sexuais , Transdução de Sinais , Fatores de Tempo , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
11.
Nature ; 599(7883): 147-151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616045

RESUMO

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Assuntos
Conjuntos de Dados como Assunto , Disseminação de Informação , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Animais , Linhagem Celular , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Feminino , Complexo de Golgi/ultraestrutura , Humanos , Interfase , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Varredura/normas , Microtúbulos/ultraestrutura , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Publicação de Acesso Aberto , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/ultraestrutura , Ribossomos/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura
12.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613334

RESUMO

Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophilamelanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Testes Genéticos , Micronúcleo Germinativo/metabolismo , Mitose , Mutação/genética , Ubiquitinação , DNA Polimerase teta
13.
J Insect Physiol ; 134: 104309, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496279

RESUMO

The adult Drosophila intestinal epithelium must be tightly regulated to maintain regeneration and homeostasis. The dysregulation of the regenerative capacity is frequently associated with intestinal diseases such as inflammation and tumorigenesis. Here, we showed that the G protein-coupled receptor Anchor maintains Drosophila adult midgut homeostasis by restricting Jun-N-terminal kinase (JNK) and Notch pathway activity. anchor inactivation resulted in aberrant JNK pathway activation, which led to excessive enteroblast (EB) production and premature enterocyte (EC) differentiation. In addition, increased Notch levels promoted premature EC differentiation following the loss of anchor. This defect induced by the loss of anchor ultimately caused sensitivity to stress or environmental challenge in adult flies. Taken together, our results demonstrate that the activity of anchor is essential to coordinate stem cell differentiation and proliferation to maintain intestinal homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Homeostase/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proliferação de Células , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Enterócitos , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Notch/metabolismo , Transdução de Sinais
14.
Cell Rep ; 36(7): 109553, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407411

RESUMO

yki-induced gut tumors in Drosophila are associated with host wasting, including muscle dysfunction, lipid loss, and hyperglycemia, a condition reminiscent of human cancer cachexia. We previously used this model to identify tumor-derived ligands that contribute to host wasting. To identify additional molecular networks involved in host-tumor interactions, we develop PathON, a web-based tool analyzing the major signaling pathways in Drosophila, and uncover the Upd3/Jak/Stat axis as an important modulator. We find that yki-gut tumors secrete Upd3 to promote self-overproliferation and enhance Jak/Stat signaling in host organs to cause wasting, including muscle dysfunction, lipid loss, and hyperglycemia. We further reveal that Upd3/Jak/Stat signaling in the host organs directly triggers the expression of ImpL2, an antagonistic binding protein for insulin-like peptides, to impair insulin signaling and energy balance. Altogether, our results demonstrate that yki-gut tumors produce a Jak/Stat pathway ligand, Upd3, that regulates both self-growth and host wasting.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Proliferação de Células , Corpo Adiposo/metabolismo , Homeostase , Insulina/metabolismo , Intestinos/citologia , Janus Quinases/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculos/fisiopatologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
15.
Nat Rev Cancer ; 21(11): 687-700, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389815

RESUMO

There is a large gap between the deep understanding of mechanisms driving tumour growth and the reasons why patients ultimately die of cancer. It is now appreciated that interactions between the tumour and surrounding non-tumour (sometimes referred to as host) cells play critical roles in mortality as well as tumour progression, but much remains unknown about the underlying molecular mechanisms, especially those that act beyond the tumour microenvironment. Drosophila has a track record of high-impact discoveries about cell-autonomous growth regulation, and is well suited to now probe mysteries of tumour - host interactions. Here, we review current knowledge about how fly tumours interact with microenvironmental stroma, circulating innate immune cells and distant organs to influence disease progression. We also discuss reciprocal regulation between tumours and host physiology, with a particular focus on paraneoplasias. The fly's simplicity along with the ability to study lethality directly provide an opportunity to shed new light on how cancer actually kills.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Neoplasias/patologia , Microambiente Tumoral , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/imunologia , Humanos , Imunidade Inata , Neoplasias/imunologia , Neoplasias/mortalidade , Microambiente Tumoral/imunologia
16.
Nature ; 597(7875): 239-244, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408325

RESUMO

Social isolation and loneliness have potent effects on public health1-4. Research in social psychology suggests that compromised sleep quality is a key factor that links persistent loneliness to adverse health conditions5,6. Although experimental manipulations have been widely applied to studying the control of sleep and wakefulness in animal models, how normal sleep is perturbed by social isolation is unknown. Here we report that chronic, but not acute, social isolation reduces sleep in Drosophila. We use quantitative behavioural analysis and transcriptome profiling to differentiate between brain states associated with acute and chronic social isolation. Although the flies had uninterrupted access to food, chronic social isolation altered the expression of metabolic genes and induced a brain state that signals starvation. Chronically isolated animals exhibit sleep loss accompanied by overconsumption of food, which resonates with anecdotal findings of loneliness-associated hyperphagia in humans. Chronic social isolation reduces sleep and promotes feeding through neural activities in the peptidergic fan-shaped body columnar neurons of the fly. Artificial activation of these neurons causes misperception of acute social isolation as chronic social isolation and thereby results in sleep loss and increased feeding. These results present a mechanistic link between chronic social isolation, metabolism, and sleep, addressing a long-standing call for animal models focused on loneliness7.


Assuntos
Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Comportamento Alimentar , Modelos Animais , Sono , Isolamento Social , Inanição/metabolismo , Animais , Encéfalo/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Fome , Hiperfagia/genética , Solidão , Masculino , Neurônios/metabolismo , Sono/genética , Privação do Sono/genética , Privação do Sono/metabolismo , Inanição/genética , Fatores de Tempo , Transcriptoma
17.
Cell Death Dis ; 12(9): 811, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453033

RESUMO

Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Organogênese , Animais , Sobrevivência Celular/genética , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Organogênese/genética , Fenótipo , Interferência de RNA , Asas de Animais/crescimento & desenvolvimento
18.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061177

RESUMO

The mammalian central nervous system (CNS) exhibits limited regenerative capacity and the mechanisms that mediate its regeneration are not fully understood. Here, we present a novel experimental design to damage the CNS by using a contusion injury paradigm. The design of this protocol allows the study of long-term and short-term cellular responses, including those of the CNS and the immune system, and of any implications regarding functional recovery. We demonstrate for the first time that adult Drosophilamelanogaster glial cells undergo spontaneous functional recovery following crush injury. This crush injury leads to an intermediate level of functional recovery after damage, which is ideal to screen for genes that facilitate or prevent the regeneration process. Here, we validate this model and analyse the immune responses of glial cells as a central regulator of functional regeneration. Additionally, we demonstrate that glial cells and macrophages contribute to functional regeneration through mechanisms involving the Jun N-terminal kinase (JNK) pathway and the Drosophila protein Draper (Drpr), characteristic of other neural injury paradigms. We show that macrophages are recruited to the injury site and are required for functional recovery. Further, we show that the proteins Grindelwald and Drpr in Drosophila glial cells mediate activation of JNK, and that expression of drpr is dependent on JNK activation. Finally, we link neuron-glial communication and the requirement of neuronal vesicular transport to regulation of the JNK pathway and functional recovery. This article has an associated First Person interview with the first author of the paper.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Animais , Sistema Nervoso Central/fisiopatologia , Proteínas de Drosophila/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Compressão Nervosa , Neuroglia/metabolismo , Neurônios/metabolismo , Fagócitos/metabolismo , Recuperação de Função Fisiológica , Vesículas Transportadoras/metabolismo
19.
Dev Cell ; 56(8): 1083-1099.e5, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33831351

RESUMO

Paracellular permeability is regulated to allow solute transport or cell migration across epithelial or endothelial barriers. However, how cell-cell junction dynamics controls paracellular permeability is poorly understood. Here, we describe patency, a developmentally regulated process in Drosophila oogenesis, during which cell vertices in the follicular epithelium open transiently to allow paracellular transport of yolk proteins for uptake by the oocyte. We show that the sequential removal of E-cadherin, N-cadherin, NCAM/Fasciclin 2, and Sidekick from vertices precedes their basal-to-apical opening, while the subsequent assembly of tricellular occluding junctions marks the termination of patency and seals the paracellular barrier. E-cadherin-based adhesion is required to limit paracellular channel size, whereas stabilized adherens junctions, prolonged NCAM/Fasciclin 2 expression, blocked endocytosis, or increased actomyosin contractility prevent patency. Our findings reveal a key role of cell vertices as gateways controlling paracellular transport and demonstrate that dynamic regulation of adhesion and actomyosin contractility at vertices governs epithelial barrier properties.


Assuntos
Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Oogênese , Folículo Ovariano/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Transporte Biológico , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Permeabilidade da Membrana Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Endocitose , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Junções Íntimas/metabolismo , Vitelogênese
20.
Nat Commun ; 12(1): 2070, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824334

RESUMO

The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis. We further demonstrate that Wgn binds Egr with much reduced affinity and is localised in intracellular vesicles that are distinct from those containing Egr:Grnd complexes. Altogether, our data provide insight into ligand-mediated activation of Grnd and suggest that distinct affinities of TNF ligands for their receptors promote different and non-redundant cellular functions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/química , Endocitose , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA